固体高分子形燃料電池(PEMFC)用の水素貯蔵材料および水素発生・供給システムの評価項目

- 1. 水素貯蔵材料として、固体と液体どちらがよいのか? (固体水素貯蔵材料・・・水素吸蔵/放出による体積変化、充填密度、吸放出時の熱伝導の影響等) (液体水素貯蔵材料・・・液体の供給方法・制御、熱交換、燃料の補充等)
- 2. <u>システム全体に対する</u>水素貯蔵密度はどのくらいか? **※5 重量%以上を確保できるか?**
- 3. システム容積はどのくらいか(Liters/kg-H₂)?
- 4. システム重量はどのくらいか(kg/kg-H₂)?
- 5. 水素を**"必要な量"、"必要な速度"、"必要な時間"**確保できるか?
- 6. 水素を発生・供給するために外部熱源を必要とするか?
- 7. システムの起動用として、あるいは必要量以上に発生した<u>水素を別途貯蔵するためのシステム</u> を必要とするか?
- 8. 水素放出後の貯蔵材料"**使用済み燃料**"の再生プロセスはあるか? それは"オンボード"か?"オンサイト"か?"オフサイト"か?
- 9. "使用済み燃料"の再生プロセスは経済的であるか?
- 10. 水素貯蔵材料を輸送するためにはどのような<u>設備</u>が必要となるか? (高圧容器、断熱材、防消火設備等)
- 11. 水素貯蔵システムは安全かつ安定的に取り扱うことができるか?
- 12. 水素貯蔵材料を安全かつ安定的に長期間保存することはできるか?
- 13. 水素貯蔵システムは安全面(爆発火災、自然発火等)や健康面から充分な対策がなされているか?
- 14. 特に環境面に対する充分な配慮はなされているか?
- 15. 水素貯蔵材料の原材料は天然資源として充分に確保され、普及の障害となることはないか?
- 16. 水素貯蔵材料として、また水素発生システムとしてあらゆる面から実用的であるか?
- 17. PEMFC 用の水素貯蔵・供給システムとして<u>実用的であるか?</u>
- 18. PEMFC に必要な水素源として、価格競争力があり充分な量を製造できる方法は何か? 発生・供給水素として、 $¥200/kg-H_2(ガソリン同等)$ は可能か?

Hydrogen Storage Materials and Generation Systems for PEMFC

- 1. Solid- or Liquid-state?

 Volume expansion, packing density, thermal conductivity, pumping, flow dynamics, heat exchanger, fueling/refueling, etc
- 2. H-capacity to total system (not as H-capacity per mass of material)? ∠ >5 wt%
- 3. Total system volume as **Liters/kg-H₂**?
- 4. Total system weight as kg/kg-H₂?
- 5. Is it possible to generate H₂ "at a required quantity", "at a required rate", and "for a required duration"?
- 6. Does it require any thermal energy (heat) source for releasing H₂?
- 7. Does it require any <u>auxiliary H-storage system</u> at start-up time or under excess-load condition?
- 8. Does it require any reproduction process (recycling) for "Used fuel"?
- 9. Is it possible to recycle (reproduce) "Used fuel"?
- 10. Does it require any <u>special device</u> (high pressure, insulation, fire protection, etc.) for delivery and transportation?
- 11. Can it be treated under <u>safe/stable</u> conditions?
- 12. Is it suitable for long-term storage under safe/stable conditions?
- 13. Is it protected from any danger such as health hazard, explosion, fire, pyrophoricity, or toxicity?
- 14. Is it well protective against environmental issues?
- 15. The material is really abundant on the earth?
- 16. Is it <u>really practical</u> as the H-storage material and H-generation system?
- 17. Can it be really possible for <u>practical PEMFC applications</u>?
- 18. What is **the source of Hydrogen**? Is it possible to bring the hydrogen production cost down to 200yen/kg-H₂ (\$2/kg-H₂)?